Improving Soil Health on Urban Farms

USDA Webinar- June 13, 2017

Presented By:

Minor Morgan, Farmer Albuquerque, New Mexico Rudy Garcia, USDA Albuquerque, New Mexico

- Urban farm (in the middle of Albuquerque, NM)
 - Cultivating 3.5 acres
- Mixed vegetables, cover crops, peach orchard
 - Certified organic
 - •Surface water from canal
 - Well water for drip tape

It's all about the microbes!

Bacteria, Fungi, Protozoa and Nematodes

• Plants evolved with soil microbes

- Microbes break down minerals and organic matter to be available to plants
 - Minimal soil disturbance allows microbes to grow in the soil
 - •Cover crop residue provides food for microbes

<u>Guiding Principles for Improving Soil Health</u> <u>Using a Soil Health Management System</u>

1. Grow a crop on all the land at all times 2. Grow many different crops in diverse rotations 3. Disturb the soil as little as possible

Photos illustrate farm practices that improve the soil

1. Soil health improvement activities

2. Habitat for pollinators and wildlife

3. Farm infrastructure development

4. Pest and weed management

5. Soil nutrient management

6. Water management

Practice: Cover crops

NRCS Practice # 340: Seasonal Cover Crop

•Field mix:

medium red clover, alfalfa, white clover, hairy vetch, native wildflowers

- Mix of annuals and perennials
- Flail mow and regrow
- Residue is food for microbes

Fall planted
Follows cash crop
Incorporate early spring
Cool season mix

Why? Holds moisture, pollinator habitat, increase organic matter, prevents erosion 6

Practice: Cover crops

- Permanent orchard understory
- Provides nutrients for trees
- Mowed, remains on ground
- Mix of clovers, vetch and ryegrass

NRCS Practice # 327: Conservation Cover Crop

7

- Portion is not mowed
- Reseeds itself
- Attracts Bees
- Increased pollination

Why? As a BIO FARMER we always grow 2 crops: one for us, one for the microbes

Practice: Cover crops

•Field mix:

Sudangrass, Sorghum/Sudan, Red clover. Winter wheat

- First crop after laser leveling field
- Mix of grasses and legumes
- 3 years cover crop only
- Nothing removed from land

- Cover grows 6' tall
- Mowed, allowed to regrow
- Left on ground, <u>NOT</u> incorporated

NRCS

Practice # 328: Conservation

Crop rotation

Practice: Rotate cash row with alley row every 3 years

↑

Alleyway

Alleyway

- Alleyways planted in cover crop to enrich the soil
- Low growing Dutch white clover

Why? We build soil fertility in alley rows by planting cover crops

Practice: Reduced tillage implements

<u>Roller crimper</u>
Kills crop without tilling

NRCS

Practice # 329: No till

• No Till Drill

• Plants into

existing crop

- <u>Flail mower</u>
 Lays down
 even band of
 vegetation
- <u>Narrow tiller</u>
 Tills narrow
 band for cash

crops

Why? Less soil disturbance improves microbe population

Practice: Cover crops in alley rows

- Using a soil aerator in alley row
- Opens up soil for reseeding
- Narrow width perfect for alley row

- Hand broadcasting in alley row
- Red/white clover
- Increases soil nitrogen

Why? This year's alley row is next year's cash row (we rotate every three years) 11

Practice: Cover crops in cash row

- Fall planted cover crop
- Planted in cash row, after harvesting cash crop
- Legume, grain, radish mix
- Mowed down in spring
- Residue remains on the ground
- Residue tilled in 2 weeks prior to planting cash crop

NRCS

Practice # 345: Reduced tillage

• Residue breaks down and feeds the microbes

Why? Fall cover crops in cash row improves soil for spring planting of vegetables

Practice: Single shank deep tillage

- Cuts a slit in the soil 2 feet down
- Does NOT invert the soil
- Minimal effect on microbial life
- Opens up soil to air and water flow

Why? Improves soil health through minimal disturbance of soil

Practice: Using biological inoculants

- Bacteria fix nitrogen and solublize phosphorous: Azotobacter
- Used as soil drench or foliar spray
- Once in the soil, they spread and "colonize" the soil

Why? Biological inoculants enhance the microbial life in the soil

Practice: Planting an orchard

- Laying out tree spacing
- Close spacing: trees kept short

- Buried line for sprinklers
- Each tree has own sprinkler
- Sprinklers irrigate cover crop

Why? An orchard adds diversity to farm ecosystem- and is a great cash crop!

Practice: Orchard with cover crop understory

NRCS Practice # 612: Tree and shrub establishment Practice 660: Tree pruning

- Irrigating the cover crop
- Mix of grasses and legumes
- Wood mulch creates fungal environment

- Cover crop enriches soil
- Tree root zone extends into cover crop

- Trees planted as "whips"
- Tree growth after one season
- Mulch around trees but NOT at base of trees

Why? A healthy cover crop under trees provides nutrients to tree roots

Practice: Perennial shrubs along field borders

Before

- Permanent perennial shrubs
- Watered by drip line
- Suppresses weeds

After

- Shrubs after one year's growth
- Apache plume, sage, chamisa, turpentine bush

Why? Food source for bees, windbreak, retains moisture, increases diversity

Practice: Hedgerow Planting

Before

- Planted along fence line
- Habitat for variety of beneficial insects
- Flowering cactus attract bees

After

- Shrubs in bloom
- Russian sage, globe mallow, catmint

Why? Food source for bees, windbreak, retains moisture, increases diversity

Practice: Hedgerow Planting attracts pollinators

Why? Food source for bees, windbreak, retains moisture, increases diversity

Practice: Hedgerow Planting

• Followed by Russian sage and globe mallow

• Catmint comes out early

Why? Flowering plants attract beneficial insects to the farm

Practice: Wildlife habitat

• Raptor pole

• Bat box

• Ducks during flood irrigation

Why? Predators (hawks, owls, bats) eat pests (mice, voles, mosquitoes). Ducks are just fun

21

NRCS Practice # 645: Wildlife habitat management

Practice: Bees on the Farm!

• Crop pollination

Particularly good for melons, squash, cucumbers, pumpkins

• **Topbar hive** Easier to maintain than Langstroth hive

Why? Bees increase yields and improve diversity

Practice: Bees on the Farm!

• Hangin out!

• Bee water station

Living plants keep water clean

Why? Bees increase our yields and improve diversity

Practice: Vegetation along ditchbank

NRCS Practice # 390: Riparian cover Practice #644: Wetland habitat Practice # 603: Herbaceous wind barrier

Why? Provides habitat for wildlife and flowering plants for beneficial insects

Practice: Greenhouse

- Maintains quality control
- Start transplants from seed

Why? All aspects of plant propagation under our control

Practice: Trellis system for vertical growing

Rebar Trellis

- Welded rebar trellis has long life
- Perfect for vining plants
- Saves space
- Easy to move and install

 Crops we grow vertically Beans, peas, tomatoes, melons, cucumbers, squash

Why? Growing plants up on a trellis saves space and disrupts pests

Practice: Vertical Growing of Tomatoes

• 6 varieties of cherry tomatoes

• Tomatoes growing vertically

Why? Saves space and ease of harvesting

Practice: Vertical Growing of Melons

- Melons will climb a trellis
- Why? Saves space and confuses squash bugs

• Melons hang naturally without support

Practice: High Grow/Low Grow System

Tractor fits between trellisesDrives over low crops no problem

- Tractor can navigate
- We spray three sides
- Intercropping confuses pests

 Low grow crops: peppers, sweet potatoes, garlic, potatoes, onions, beets, radish, carrots

Why? Efficient use of row space

Practice: Low Growing Crop- Sweet Potatoes

• All purple sweet potato

• Low growing sweet taters

Why? Can easily drive tractor over row

Practice: Low Growing Crop- Eggplant

• Low growing eggplant

Why? Can easily drive tractor over row

Practice: Rows on 30" Centers

- Alley row and cash row on 30" centers
- Every row has buried irrigation outlet for driptape

Why? We alternate cash and alley rows every 3 years

NRCS Practice # 561: Heavy use area protection Practice #342: Critical area planting

Practice: Roadways and Critical Areas Planted in Cover Crops

Why? Protects and enriches the soil and prevents erosion.

Practice: Walk in cooler

NRCS Practice # 672: Building envelope improvement

- 20' container converted to a cooler
- Insulated and secure

- Coolbot technology
- Uses a regular air conditioner
- Low cost
- Very efficient

Why? Efficient, low cost cooling assures food safety

Practice: Companion Planting for Pest Suppression

NRCS Practice # 595: Integrated Pest management

- Garlic planted under peach trees
- Repels peach tree borer

French marigolds

- Marigolds in tomatoes
- Repels whiteflies and nematodes

Why? Many flowers, alliums and herbs repel insect pests

Practice: Insect Pests Traps and Lures

Peach tree borer trap

Cucumber beetle lure and trap

- Lures attract specific insect pests
- Sticky traps capture pests
- Sticky trap without a lure is a monitoring tool for presence of pest

Why? A natural control not toxic to beneficial insects

Practice: Intercropping

- Different crops in each row
- Disrupts the feeding and reproduction cycles of pests
- Increases diversity supporting beneficial insects

Why? Intercropping confuses insect pests

NRCS Practice # 585: Strip cropping

Practice: Habitat for Beneficial Insects

• Spider eating grasshopper

• Ladybugs eating aphids

Why? A natural control not toxic to beneficial insects

Practice: Organically Approved Pesticides

- Pure oils such as Neem, Karanja and Castor
- Soaps such as Dr. Bronner's
- Biological agents such as:
 - Beauveria fungus
 - Nosema fungal spores
 - Bacillus thuringiensis bacteria
 - Spinosad bacteria

Why? Controls insect pests naturally

Practice: Weed Suppression- Landscape Fabric

- Fabric reusable, lasts 5 years
- Used in all cash crop rows
- Blocks weeds
- Drip tape laid under fabric

• Holes in fabric are specific to each crop

• Burning holes for transplants

Why? Fabric suppresses weeds in cash rows

Practice: Weed Suppression- Straw Mulch

• Straw mulch around beans

• Straw mulch around garlic

Why? Straw mulch suppresses weeds, retains moisture, enriches soil

Practice: Weed Suppression- Wood Chip Mulch

NRCS

Practice # 484: Mulching

• Wood chips from on-farm debris

• Wood mulch around trees in orchard Note breakdown of chips turning into soil

Why? Wood chip mulch suppresses weeds and produces rich fungal dominant soil

5. Soil Nutrient Management

Practice: Biological Inoculants

• Foliar spraying young plants

Azotobacter bacteria

- solubilizes phosphorous in soil (side drench)
- extracts nitrogen from the air (foliar spray)

Why? Biological inoculants "super charge" the soil with helpful microbes

5. Soil Nutrient Management

Practice: Green Manure

NRCS Practice # 590: Nutrient Management

• Small scale: mower keeps residue on the ground

- Residue chopped up into small pieces
- Evenly distributed on the ground
- No-till drill through the residue

Why? Residue left on the ground becomes food for the microbes in the soil

Practice: Compost

Compost from certified organic source.

Compost added to all cash crop rows

Why? Compost is a biological soil amendment containing billions of microbes

Practice: Compost Tea

40 gallon brewer with aerator

Foam is evidence of microbial growth

- Brewed liquid extract from compost
- Amplifies the microbes in compost
- Foliar spray or side dress

Why? Compost Tea increases the microbial population in the soil, improving soil health

5. Soil Nutrient Management

Practice: Injection of Soluble Nutrients

• Nutrients pumped into drip line

- Inject seaweed and soy based nitrogen
- Use 40 gal sprayer to inject into drip lines

Why? Nutrients go right to the root zone of plant

Practice: Installing an Irrigation Canal Turnout

NRCS Practice # 320: Irrigation Canal

Digging channel for culvert into field

12" turnout into field

Why? Controls flow of surface water from canal into field

Practice: Concrete Box to Distribute Water Into Pipeline

NRCS Practice # 587: Water control structure

Finished water control structure

Forming water control structure

Why? Distributes surface water into buried 12" pipeline

Practice: Buried Pipeline with Alfalfa Valves

NRCS Practice # 430: Irrigation Pipeline Practice # 443: Surface irrigation system

12" buried pipeline

Why? Buried pipeline distributes surface water to alfalfa pop-up valves

Practice: Berms to Control Water Flow

Berm covered in vegetation

Why? Controls flow of surface water within the field and adds habitat

NRCS Practice # 362: Diversion

NRCS Practice # 464 Irrigation land leveling

Practice: Field Laser Leveling

Disked and ready for leveling

After laser leveling complete

Laser level field with cover crop

Why? A level field assures even water flow and conservation of water

6. Irrigation- Well Water Management

Practice: Drilling a Well

NRCS Practice # 642: Water well Practice # 355 Well water testing

- Use with drip tape and micro-sprinklers
- Year-round farming
- Water testing for quality is important

Why? Well water is ideal for drip tape and micro irrigation systems

Practice: Drip Tape Micro Irrigation

Permanently buried manifold and distribution lines

Irrigation lines spaced every 30"

Every row has buried control box

Why? Permanently buried lines assure ease of operation

6. Irrigation- Well Water Management

NRCS Practice # 449: Irrigation water management

Practice: Drip Tape Irrigation Zone Control Station

Flow rate meter and valves

Zone control station directing well water into drip lines

Why? Controls and monitors the flow rate, volume and pressure in the drip lines

NRCS Practice # 449: Irrigation water management

Practice: Tensiometers

Prepping tensiometers for placement in field

Field placement at different depths

- Measures soil moisture
- Replicates root osmotic pressure
- Measures true water needs of plant

Why? Assures accurate irrigation based on plant needs

6. Irrigation- Well Water Management

Practice: Drip Tape in Cash Crop Rows

- 1,2 or 3 drip lines per row
- Long lasting (4-5 years) 15 mil thick tape
- Each row with own control box

Why? Efficient use of water, able to inject nutrients

6. Irrigation- Well Water Management

Practice: Micro Sprinklers in Orchard

- Waters both trees and cover crop
- One sprinkler head per tree
- Efficient use of water

NRCS Practice # 442: Sprinkler irrigation

Summary

- **1.** As a soil health Bio Farmer, we are always growing **2** crops: one for us (cash crop) and one for the microbes (cover crop).
- **2.** Quality compost- either made on farm or brought in- is most important amendment
- **3.** Use biological inoculants and biologically based pesticides: they work with nature rather than against it.
- 4. Grow cover crops on all fields: before and after a cash crop.
- 5. Avoid chemicals and pesticides that will kill the microbial life in the soil.
- 6. Your farm is a unique eco-system where every practice affects all aspects of your farm.

NRCS Practices Listed by Category

1. Soil Health Improvement Practices

#340- Cover Crops
#327- Conservation Cover
#328- Conservation Crop Rotation
#329- Tillage Management, No till
#345- Tillage Management, Reduced Till
#324- Deep Tillage
#612- Tree Establishment
#490- Tree site Preparation
#660- Tree Pruning

2. Habitat enhancement for pollinators

#386- Field Border
#422- Hedgerow Planting
#647- Habitat Development
#645- Wildlife Habitat Management
#390- Riparian Cover
#644- Wetland Wildlife Habitat
#603- Wind Barrier

3. Farm Infrastructure management

#561- Heavy Use Area Protection#342- Critical Area Planting#672- Building Envelope Improvement

- <u>4. Pest and weed management</u> #595- Integrated Pest Management #585- Strip Cropping
- 5. Soil nutrient management #484- Mulching #317- Composting #590- Nutrient Management

6. Water management

- #320- Irrigation Canal or Lateral
- #587- Structure for Water Control
- #430- Irrigation Pipeline
- #362- Diversion Channel
- #443- Irrigation, surface and subsurface
- #464- Laser Land Leveling
- #642- Water Well
- #355- Ground Water Testing
- #441- Micro Irrigation
- #449- Irrigation Water Management
- #557- Row Arrangement
- #442- Sprinkler System

Minor is available to consult on:

- Transitioning to organic practices
- Organic System Plan development
 - Holistic farm planning
 - NRCS practices
- Soil Health Management Systems
- Biologically based farm practices

THANK YOU!

Minor Morgan North Valley Organics P.O. Box 6848 Albuquerque, New Mexico 87197 (505) 379-1640 minormorgan@northvalleyorganics.com www.northvalleyorganics.com Rudy Garcia USDA Natural Resources Conservation Service 6200 Jefferson St, NE Albuquerque, New Mexico 87109 (505) 249-1920 rudy.garcia@nm.usda.gov